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ABSTRACT

As the semiconductor industry moves towards a fabless paradigm, the risk of hardware Trojans

being inserted at various production stages has increased. Recently, there has been a trend towards

using machine learning solutions to detect hardware Trojans more effectively, with a focus on model

accuracy as an evaluation metric. However, in a high-risk and sensitive domain, even a small

misclassification is unacceptable. Additionally, expecting an ideal model, especially when Trojans

evolve over time, is unrealistic. Thus, there is a need for metrics to assess the reliability of detected

Trojans and a mechanism to simulate unseen ones.

In this thesis, we generate evolving hardware Trojans using conformalized generative

adversarial networks and offer an approach to detecting them based on a non-intrusive statistical

inference framework, leveraging the Mondrian conformal predictor. This approach acts as a

wrapper over any machine learning model, providing predictions accompanied by uncertainty

quantification for each identified Trojan, facilitating more resilient decision-making. In cases where

a NULL set emerges, indicative of instances where the prediction set is empty, we discuss an

approach to reject the decision while providing explainability.

Moreover, while the focus has been on statistical or deep learning approaches, the limited

number of Trojan-infected benchmarks affects detection accuracy and hampers the ability to detect

zero-day Trojans. To mitigate this shortfall, we employ generative adversarial networks to augment

our data in two alternative representation modalities: graph and tabular, ensuring a representative

dataset with different modalities. Additionally, we propose a multimodal deep learning

methodology for hardware Trojan detection and assess outcomes from both early and late fusion

strategies. We also evaluate the uncertainty quantification metrics of each prediction to facilitate

risk-aware decision-making. The findings affirm the efficacy of our proposed hardware Trojan

detection technique and pave the way for future research in multi-modality and uncertainty

quantification to address broader hardware security concerns.

The practical application of the proposed approach lies in enhancing hardware Trojan detection
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and evaluation through an uncertainty-aware approach within the semiconductor industry.

Validation of the approach on synthetic and real chip-level benchmarks underscores its effectiveness

and opens avenues for future investigations in multi-modality and uncertainty quantification to

address broader hardware security concerns in the semiconductor domain.
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CHAPTER 1

INTRODUCTION

Security wins many battles but loses the security war. We are definitely going

backwards in computer security.

— Adi Shamir, A.M. Turing Award Laureate

Hardware Trojan (HT) insertion involves a malicious alteration to a hardware component’s

design, posing risks such as device malfunction, data leakage, or physical damage [1]. With the

semiconductor industry adopting a fabless model, the potential for HT insertion at various

manufacturing stages grows, posing a substantial security threat. Traditional detection methods, like

signature-based approaches [2], prove ineffective against evolving HT attacks, prompting a shift

towards machine learning (ML) solutions. However, existing ML approaches often lack information

on datasets, struggle with concept drift, and require additional evaluation metrics [3]. A recent

study in [4] questions the universality of ML in addressing hardware security concerns [5].

ML methods face challenges in production due to the evolving nature of a real-time dataset

characterized by the concept drift caused by intelligent modifications to HT insertion techniques.

The thesis introduces PALETTE, an algorithm-agnostic framework for detecting the evolving

hardware Trojan in a circuit, utilizing conformal prediction [6]. This provides a theoretical

guaranteed for each of the predictions made for the new data points [7]. Non-invasive and

implementable as a wrapper over existing ML models, PALETTE offers set predictions, ensuring

the correct class is included 90% of the time on average (i.e., 𝛼 = 0.1).

HT insertion is a concern in fabless semiconductor manufacturing, with potential attacks at

different stages [8–11]. Vulnerabilities span design phases, EDA processes, and post-production

stages, necessitating robust security measures [12–16]. Comprehensive approaches, while crucial,

come with drawbacks, leading to the relevance of ML in countering HTs. Challenges like

1



resource-intensive training, adversarial attacks, and interpretability are acknowledged.

Recently, machine learning has surfaced as a formidable tool for HT detection in fabless 

semiconductor manufacturing [17–21]. Challenges include acquiring diverse datasets, susceptibility 

to adversarial attacks [22], and the need for interpretability and explainability [23, 24]. NOODLE, 

proposed in this thesis, is an uncertainty-aware hardware Trojan detection using multimodal deep 

learning with graph (AST) representation and tabular data, performing binary classification. 

 Research Gap 

The shared identification of these gaps in research sets the stage for a thorough exploration 

plan, underscoring the particular areas that demand deeper investigation and focused development in 

the field of multimodal learning for detecting hardware trojans. A few of them are discussed 

below:
Dataset Transparency and Class Distribution: The lack of transparency in revealing

comprehensive dataset details, especially concerning class distribution differences, highlights

a research gap. There is a need for scholarly attention to address transparency issues and gain

a nuanced understanding of dataset characteristics in the presence of significant class

distribution variations.

Concept Drift in Model Evaluation: The insufficiency in considering "concept drift"

stemming from adversaries’ evolving insertion techniques introduces a research gap. Coping

strategies are required to effectively handle concept drift, indicating the necessity for further

exploration and validation in this area.

Custom metrics for Model Evaluation: The inadequacy of conventional metrics for model

evaluation underscores a research gap. There is a need for additional measures to strengthen

traditional evaluation methods, ensuring reliable decision-making and comprehensive

prediction coverage.

Uncertainty-Aware Multimodal Learning: The limited exploration of diverse multimodal

approaches, particularly beyond prevalent graph representation and tabular data, is identified
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as a research gap. Scholarly inquiry and investigation into various modality combinations in

multimodal learning for hardware trojan detection are needed.

Interpretability and Explainability: The acknowledgment of the significance of

interpretability and explainability in multimodal models highlights a research gap. The

development of interpretable multimodal hardware trojan detection models is necessary to

enhance trust and understanding in the domain.

Preliminaries

Calibrated Prediction

 Calibration in predictive modeling is a fundamental process aimed at ensuring the 

alignment between a model’s confidence scores and the actual probabilities of correctness in its 

predictions [25].

Let 𝑋 denote the input data and 𝑌 the corresponding output label. Within a training dataset 𝐷 

= {(𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . , (𝑥𝑛, 𝑦𝑛)}, the objective is to derive a function 𝑓 that can effectively predict 

the correct output label 𝑦 for a given input 𝑥. The model’s output for a specific input 𝑥 is 

represented by 𝑓 (𝑥), while the actual probability of prediction correctness is denoted as 𝑃(𝑦 = 1|𝑥).

A calibrated model is characterized by its ability to produce a confidence score 𝑔(𝑥) that 

accurately reflects the true probability of correctness for each prediction. The central tenet of 

calibration lies in ensuring the alignment of the confidence score 𝑔(𝑥) with the actual probabilities, 

as described by the condition 𝑃(𝑦 = 1|𝑔(𝑥) = 𝑝) = 𝑝 for all 𝑝 within the interval [0, 1]. To formalize 

this, let’s define the calibration error for a set of predictions. For a given set of 𝑚 predictions {(𝑥1, 

𝑦1), (𝑥2, 𝑦2), . . . , (𝑥𝑚, 𝑦𝑚)}, where 𝑦𝑖 is the true label and 𝑔(𝑥𝑖) is the confidence score produced by 

the model for input 𝑥𝑖, the calibration error is computed as the mean squared difference between 

the confidence scores and the true probabilities and the reduction of this error constitutes the 

fundamental objective of calibration techniques.:

Calibration Error =
1
𝑚

𝑚∑︁
𝑖=1
(𝑔(𝑥𝑖) − 𝑃(𝑦𝑖 = 1|𝑥𝑖))2
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                                             Why We Need Calibration?

 In the context of HT detection, calibration plays a pivotal role in evaluating the likelihood 

of Trojan presence within a circuit, thereby guiding crucial decision-making processes. A properly 

calibrated model offers reliable confidence scores, aiding in discerning situations where the circuit 

is unlikely to harbor Trojans despite high confidence scores. Conversely, low confidence scores 

coupled with a high likelihood of Trojan presence necessitate thorough scrutiny and potential 

mitigation measures.

By rigorously calibrating predictive models, researchers and practitioners can enhance the 

reliability and interpretability of predictions, thereby fortifying decision-making frameworks in 

critical domains like HT detection.

                                                Conformal Prediction

Conformal prediction, introduced by Shafer and Vovk [6], is a machine learning paradigm 

designed to quantify prediction uncertainty through the generation of prediction sets. This 

framework serves to augment the inference capabilities of traditional models, ensuring robust 

validity and facilitating the estimation of confidence levels for individual predictions. Within the 

domain of HT detection, the notion of label-conditional validity assumes importance, particularly 

when confronted with imbalanced datasets characterized by disparities in label proportions. This 

relevance is accentuated by the inherent rarity of encountering a Trojan within a circuit. Notably, 

the absence of label-conditional validity tends to disproportionately impact minority classes, 

exacerbating the potential for biases in predictions [26]. Nonetheless, the mitigation of such biases 

can be achieved through the establishment of label-conditional validity, which guarantees that the 

error rate, even for minority classes, will ultimately converge to the designated significance level 

over time.

In certain instances, conformal prediction may yield uncertain predictions, indicated by 

prediction sets containing multiple values. This scenario arises when none of the labels can be 

confidently rejected at the specified significance level.

In the application of conformal prediction, the conventional confusion matrix undergoes
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modification due to the characteristic of prediction sets, which encompass multiple values rather

than a singular prediction. In binary classification scenarios, it becomes imperative to account for

the number of accurately predicted instances, wherein the prediction set exclusively contains the

correct label, alongside the tally of inaccurately predicted instances, where the prediction set

encompasses solely the incorrect label. Also, due consideration must be given to instances of

inconclusive predictions, manifesting when the prediction set encompasses both labels, as well as

instances characterized by an empty prediction set. There are circumstances wherein furnishing a

single value point prediction supersedes the provision of a prediction set or interval in a hedged

forecast. In such scenarios, opting for the label associated with the highest 𝑝-value represents a

straightforward and judicious choice. This point prediction can be hedged by incorporating

supplementary information elucidating the underlying uncertainty.

FIGURE 1. Demonstration of the conformal prediction framework.

In this thesis our work relies on Mondrian Inductive Conformal Prediction (ICP) [27] as shown 

in Algorithm 3. Furthermore, to decrease the rate of false negatives in alert systems, we require 

class-based authenticity for samples classified as "Evolving Trojan." Additionally, we must ensure 

that the samples labeled as "Evolving Trojan" are indeed genuine to attain this goal.

To ensure the integrity of the non-conformity scores computation, we exclusively account for 

the scores pertaining to instances sharing the identical class as the tested object 𝑥𝑛+1. This approach 

is delineated as

𝑝
𝐶𝑘

𝑛+1 =

���{𝑖∈1,...,𝑞:𝑦𝑖=𝐶𝑘 ,𝛼
𝐶𝑘
𝑛+1≤𝛼𝑖

}���
|{𝑖∈1,...,𝑞:𝑦𝑖=𝐶𝑘}| Here, 𝑝𝐶𝑘

𝑛+1 represents the non-conformity score for the class 𝐶𝑘 ,

computed by considering the proportion of instances with the class label 𝐶𝑘 that possess a

non-conformity score lower than or equal to the non-conformity score of the object 𝑥𝑛+1. This
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Algorithm 1: Mondrian ICP
Input :Training data 𝐷, test instance 𝑥, significance level 𝛼, number of trees 𝑇 , and

maximum tree depth 𝑑.
Output
:

Prediction set 𝐶 (𝑥) for 𝑥.

1 Divide 𝐷 into 𝑇 disjoint subsets 𝐷1, . . . , 𝐷𝑇 ;
2 for 𝑡 ← 1 to 𝑇 do
3 Sample 𝐷′𝑡 from 𝐷𝑡 by recursively partitioning 𝐷𝑡 along randomly chosen hyperplanes

until each partition contains at most 2𝑑 points.
4 Train a classification model 𝑀𝑡 on 𝐷′𝑡 .
5 Compute the conformity scores 𝑠𝑡 (𝑥) of 𝑥 with respect to each model 𝑀𝑡 .
6 Sort the conformity scores 𝑠𝑡 (𝑥) in decreasing order.
7 Compute the 𝑝-values 𝑝𝑡 of the 𝑇 conformity scores 𝑠𝑡 (𝑥) using the formula 𝑝𝑡 =

𝑇−𝑡+1
𝑇

.
8 Compute the threshold ℎ such that ℎ = 𝑠𝑡 (𝑥) if 𝑝𝑡 > 𝛼, otherwise ℎ = ∞.
9 Construct the prediction set 𝐶 (𝑥) as the set of all labels 𝑦 such that 𝑠𝑡 (𝑦) ≥ ℎ for all

models 𝑀𝑡 .
10 return 𝐶 (𝑥)

computation ensures a focused assessment of conformity within the context of the specific class 

under consideration.

                                                        Guaranteed Coverage of Prediction

In the domain of HT detection, it is not only important to have a high level of confidence in the 

predictions made by a model but also a guarantee of the coverage of each prediction. The property 

of guaranteed coverage is an inherent property of conformal prediction, which provides statistical 

guarantees of the correctness of the model’s predictions [28]. The theoretical guarantee of coverage 

is based on the significance level, which is the probability of the model making a mistake. For 

example, if we set the significance level to 0.05, it means that we allow the model to make mistakes 

5% of the time.

The theoretical guarantee of coverage is valid for any input 𝑥, that the true output label 𝑦 will 

be contained in the prediction set 𝐶 (𝑥) with a probability of at least 1 − 𝛼, where 𝛼 is the 

significance l evel. Mathematically, this can be expressed as:
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𝑃(𝑦 ∈ 𝐶 (𝑥)) ≥ 1 − 𝛼

In other words, the probability of making a mistake is bounded by 𝛼, and as 𝛼 decreases, the

size of the prediction set decreases, leading to higher confidence in the model’s predictions.

Similarly, if the value of 𝛼 increases, consequently the size of the prediction set also increases;

however, this also reduces the significance level (confidence) of the predictions.

For example, if we set 𝛼 = 0.05, it means that we are 95% confident that the true output label 𝑦

is contained in the prediction set 𝐶 (𝑥) for any input 𝑥. The use of conformal prediction provides a

strong theoretical guarantee of the correctness of the model’s predictions in the context of HT

detection, and the corresponding proof is given in Theorem 2.

Theorem 1. Let D be a probability distribution over a set X × {0, 1}, where X is a set of input

features and {0, 1} is the set of labels. Let 𝑓 : X → {0, 1} be a binary classifier, and let 𝜖 ∈ (0, 1)

be a confidence level. Then, the conformal prediction algorithm outputs a set of predictions

𝐶 (𝑥) ⊆ {0, 1} for each input 𝑥 ∈ X such that:

P[(𝑥, 𝑦) ∼ D, 𝑦 ∈ 𝐶 (𝑥)] ≥ 1 − 𝜖

where (𝑥, 𝑦) ∼ D denotes sampling a pair (𝑥, 𝑦) from the distribution D.

Proof: The proof follows from the construction of the conformal prediction algorithm. Given

an input 𝑥, the algorithm outputs a set of predictions 𝐶 (𝑥) based on the observed labels of the

training examples with similar input features to 𝑥. The algorithm guarantees that each prediction in

𝐶 (𝑥) has a 𝑝-value less than or equal to 𝜖 for any new input with the same feature vector as 𝑥. Since

the algorithm outputs a set of predictions, the probability that at least one of the predictions is

correct is at least 1 − 𝜖 .

Corollary 1. Let D, 𝑓 , and 𝜖 be as in Theorem 2. For any sample size 𝑛, the conformal prediction
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algorithm outputs a set of predictions 𝐶 (𝑥1), . . . , 𝐶 (𝑥𝑛) for each input 𝑥1, . . . , 𝑥𝑛 ∈ X such that:

P[∀𝑖 ∈ {1, . . . , 𝑛}, (𝑥𝑖, 𝑦𝑖) ∼ D, 𝑦𝑖 ∈ 𝐶 (𝑥𝑖)] ≥ 1 − 𝜖

where (𝑥𝑖, 𝑦𝑖) ∼ D denotes sampling a pair (𝑥𝑖, 𝑦𝑖) from the distribution D for each 𝑖.

Proof: The proof follows from a union bound over the 𝑛 samples:

P[∀𝑖 ∈ {1, . . . , 𝑛}, (𝑥𝑖, 𝑦𝑖) ∼ D, 𝑦𝑖 ∈ 𝐶 (𝑥𝑖)]

≥ 1 −
𝑛∑︁
𝑖=1
P[(𝑥𝑖, 𝑦𝑖) ∼ D, 𝑦𝑖 ∉ 𝐶 (𝑥𝑖)]

≥ 1 − 𝑛𝜖

where the second inequality follows from Theorem 2.

                                                  Ensuring Guaranteed Prediction Coverage

In the domain of HT detection, the confidence level of model predictions is very important, as 

is the assurance of encompassing all potential outcomes for the decision making. The concept of 

guaranteed coverage in conformal prediction offers statistical guarantee for the accuracy of model 

predictions [28]. The theoretical underpinning of coverage guarantee hinges on the significance 

level, denoting the permissible probability of model errors. For instance, setting the significance 

level to 0.05 implies tolerance for errors 5% of the time with 95% guarantee.

The theoretical coverage guarantee stipulates that for any given input 𝑥, the true output label 𝑦 

will be encompassed within the prediction set 𝐶 (𝑥) with a probability of at least 1 − 𝛼, where 𝛼 

represents the significance l evel. This is mathematically expressed as:

𝑃(𝑦 ∈ 𝐶 (𝑥)) ≥ 1 − 𝛼

In other words, the probability of wrong prediction is confined by 𝛼 . As 𝛼 diminishes, the size

of the prediction set contracts, increasing confidence in model p redictions. Conversely, elevating 𝛼
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expands the prediction set, albeit at the cost of reduced prediction confidence.

For example, setting 𝛼 = 0.05 signifies 95% confidence that the true output label 𝑦 lies within

the prediction set 𝐶 (𝑥) for any given input 𝑥. Leveraging conformal prediction furnishes a robust

theoretical framework ensuring the accuracy of model predictions in HT detection, substantiated by

the proof presented in Theorem 2.

Theorem 2. LetD denote a probability distribution over a set X × {0, 1}, where X represents input

features and {0, 1} denotes labels. Consider a binary classifier 𝑓 : X → {0, 1}, and let 𝜖 ∈ (0, 1)

denote a confidence level. Then, the conformal prediction algorithm furnishes a set of predictions

𝐶 (𝑥) ⊆ {0, 1} for each input 𝑥 ∈ X such that:

P[(𝑥, 𝑦) ∼ D, 𝑦 ∈ 𝐶 (𝑥)] ≥ 1 − 𝜖 where (𝑥, 𝑦) ∼ D signifies sampling a pair (𝑥, 𝑦) from the

distribution D.

Proof: The proof stems from the structure of the conformal prediction algorithm. Given an

input 𝑥, the algorithm generates a set of predictions 𝐶 (𝑥) based on observed labels of training

examples sharing similar input features with 𝑥. The algorithm ensures that each prediction in 𝐶 (𝑥)

possesses a 𝑝-value no greater than 𝜖 for any new input bearing the same feature vector as 𝑥. Since

the algorithm yields a set of predictions, the probability of at least one correct prediction is at least

1 − 𝜖 .

Corollary 2. Consider D, 𝑓 , and 𝜖 as in Theorem 2. For any sample size 𝑛, the conformal

prediction algorithm provides a set of predictions 𝐶 (𝑥1), . . . , 𝐶 (𝑥𝑛) for each input 𝑥1, . . . , 𝑥𝑛 ∈ X

such that:

P[∀𝑖 ∈ {1, . . . , 𝑛}, (𝑥𝑖, 𝑦𝑖) ∼ D, 𝑦𝑖 ∈ 𝐶 (𝑥𝑖)] ≥ 1 − 𝜖 where (𝑥𝑖, 𝑦𝑖) ∼ D denotes sampling a

pair (𝑥𝑖, 𝑦𝑖) from the distribution D for each 𝑖.

Proof: The proof follows from a union bound over the 𝑛 samples:
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P[∀𝑖 ∈ {1, . . . , 𝑛}, (𝑥𝑖, 𝑦𝑖) ∼ D, 𝑦𝑖 ∈ 𝐶 (𝑥𝑖)]

≥ 1 −
𝑛∑︁
𝑖=1
P[(𝑥𝑖, 𝑦𝑖) ∼ D, 𝑦𝑖 ∉ 𝐶 (𝑥𝑖)]

≥ 1 − 𝑛𝜖

where the second inequality follows from Theorem 2.

                                                                    Multimodal Learning

Integrated learning across multiple modalities [29] offers a sophisticated approach to tackle 

intricate challenges by consolidating insights from diverse data sources, encompassing text, images, 

and audio, among others. In our specific context, we leverage graphical data alongside tabular 

representations of source circuits. This holistic strategy facilitates the capture of intricate 

relationships often overlooked when scrutinizing individual modalities in isolation, thereby 

enhancing the model’s predictive capabilities.

From a mathematical standpoint, Let 𝑋1, 𝑋2, ..., 𝑋𝑀 denote 𝑀 distinct modalities of data, each 

characterized by its feature space F1, F2, ..., F𝑀 .

The primary objective is to elucidate a mapping 𝑓 that delineates intermodal relationships. 

This can be mathematically articulated as:

𝑓 : F1 × F2 × ... × F𝑀 → Y (1)

where Y represents the target space, embodying the desired prediction.

The crux of the challenge lies in adeptly consolidating insights from disparate modalities, a

task approached through diverse methodologies such as late fusion or early fusion.

In late fusion [30], features are independently extracted from each modality and amalgamated

at a later stage. This paradigm treats modalities as distinct entities until decision-making,

characterized by:

𝑓 (𝑥1, 𝑥2, ..., 𝑥𝑀) = 𝑔(ℎ1(𝑥1), ℎ2(𝑥2), ..., ℎ𝑀 (𝑥𝑀)) (2)
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where ℎ𝑖 denotes feature extraction for modality 𝑖, and 𝑔 amalgamates the extracted features.

In early fusion [31], information from diverse modalities converges at the input level, yielding

a cohesive joint feature representation, expressed as:

𝑓 (𝑥1, 𝑥2, ..., 𝑥𝑀) = ℎ(𝑥1, 𝑥2, ..., 𝑥𝑀) (3)

where ℎ amalgamates the raw input data from all modalities.

                                                                         Related Works

The application of traditional machine learning (ML) techniques in hardware Trojan (HT) 

detection has primarily concentrated on modeling methodologies. This involves the development 

and implementation of algorithms aimed at enhancing the overall accuracy of HT detection systems. 

The input data for these models typically includes features extracted from the Register Transfer 

Level (RTL) code, represented both in tabular and graphical formats to illustrate the circuit’s 

structure. Various surveys on ML approaches for HT attack detection have been conducted, as 

referenced in [17, 18, 21, 32]. Additionally, in some studies such as [33, 34], image classification 

techniques have been employed, while in others, multimodal image processing has been utilized [35]. 

The predominant focus of these investigations has been on feature extraction from gate-level netlists 

and the utilization of ML models such as Support Vector Machine (SVM) [36], Neural Network 

(NN) [37], eXtreme Gradient Boosting (XGB) [38], and Random Forest (RF) classifiers [39].

With the emergence of Reinforcement Learning (RL) as a successful method in other domains, 

several endeavors have explored its application in the realm of hardware security. Notable examples 

include RL-based static detection [40] and RL integrated with adaptive sampling for on-chip 

detection [41]. In these methodologies, a prevalent strategy entails the initial training of a classifier 

model followed by the fine-tuning of hyperparameters. This iterative process is designed to mitigate 

the false negative rate, thereby enhancing the overall accuracy of the model. While Graph Neural 

Network (GNN) [42, 43] and Abstract Syntax Tree (AST) [44] are generated for the Register
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Transfer Level (RTL) code, it remains unclear how these graphical representations can effectively

capture both the structural and behavioral attributes of the circuit.

Additionally, addressing the phenomenon of concept drift becomes imperative

post-deployment of a model, given the potential dissimilarity between newly acquired data and the

original training dataset. An illustrative instance in the domain of security applications is detailed

in [45], which entails the transformation of data samples into a lower-dimensional space and the

autonomous derivation of a distance metric capable of assessing their disparities. Notably, while

concept drift has garnered attention in various domains, its exploration within the context of

Hardware Trojans (HTs) remains scant, despite the inherent evolution of HTs over time.

Moreover, the interpretability aspect of machine learning (ML) finds its niche within the realm

of hardware security. For instance, SHapley Additive exPlanations (SHAP) have been applied in

studies such as [46], [47], and [48], showcasing promising outcomes on benchmark datasets.

However, the utility of SHAP is marred by inherent limitations, including the disregard for causality

and susceptibility to human biases. It predominantly evaluates feature contributions within a given

dataset, neglecting to elucidate their real-world behaviors, which may diverge from the dataset

context. The focal point of traditional machine learning approaches in Hardware Trojan (HT)

detection primarily revolves around modeling methodologies. This entails the crafting and

execution of algorithms aimed at bolstering the overarching accuracy of HT detection systems. The

model receives inputs derived from features extracted from Register Transfer Level (RTL) code,

which are depicted in both tabular and graphical formats, encapsulating the circuit’s architecture.

Numerous surveys have been undertaken to explore the applicability of ML in detecting HT attacks.

Many scholarly works has worked into feature extraction from Register Transfer Level (RTL)

or gate-level netlists, harnessing ML models such as Support Vector Machine (SVM) [36], Neural

Network (NN) [37], eXtreme Gradient Boosting (XGB) [38], and the Random Forest (RF)

classifier [39]. Notably, [34] also explores the utilization of image classification techniques in this

domain.
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Multimodal deep learning (DL) has garnered significant attention within the Artificial 

Intelligence (AI) community. Early investigations, typified by Deep Boltzmann Machines (DBM), 

were dedicated to enhancing the model’s ability to comprehend probability distributions across 

diverse input modalities [49]. Furthermore, the application of uncertainty-aware multimodal 

learning techniques has yielded successful outcomes in healthcare [50] and scenarios featuring 

multimodal task distributions, particularly in safety-critical environments [51]. In this thesis, I aim 

to amalgamate graph [52, 53] and Euclidean data modalities, complemented by uncertainty 

estimation methodologies.

Moreover, within the domain of hardware security, the scarcity of data points representing 

malicious or Trojan-infected instances is anticipated. Consequently, the utilization of small data 

becomes imperative [54]. Such practices have been successfully applied across various domains, 

including material science [55] and anomaly detection [56].

                                                                         Contributions

In this thesis, the research is centered around the application of multimodal deep learning for 

hardware trojan identification, with a focus on mitigating associated challenges such as missing 

modalities and imbalanced datasets. Addressing the first challenge involves effectively managing 

missing modalities and implementing uncertainty-aware multimodal fusion strategies. To tackle 

this, we utilize graphical representations of circuits [57] and Euclidean data extracted from 

processing the Abstract Syntax Tree (AST) of RTL files (Verilog) [ 58]. While multimodal 

approaches have been beneficial in improving model accuracy across various domains, their 

adoption in trojan identification has been l imited. For uncertainty-aware multimodal learning, we 

propose integrating logic at the information fusion level of modalities, utilizing 𝑝-values 

aggregation within a conformal prediction framework.

The second challenge we address is quantifying uncertainty associated with hardware trojan 

prediction outcomes and ensuring the validity of predicted labels, particularly when dealing with a 

small number of highly imbalanced data points. Specifically, we aim for a machine learning
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classifier capable of predicting the true label of a new data point with a 95% provable guaranteed

coverage, crucial for risk-sensitive domains. Developing such a system holds significant potential for

decision-makers evaluating detected labels as "Trojan-Infected." Additionally, we explore methods

for ranking detected "Trojan-Infected" circuits to facilitate more informed decision-making.

Our primary contributions can be summarized as follows:

• Introduction of a multimodal learning approach using both graph and Euclidean data

extracted from hardware circuits.

• Proposal of a model fusion approach leveraging 𝑝-values as statistical measures,

systematically evaluating each modality’s contribution to overall prediction.

• Addressing the challenges associated with missing modalities and resolving issues related to

imbalanced and small datasets by leveraging GAN. Introducing the concept of hardware

trojan evolution and presenting a method for generating evolving trojans with high precision

using a conformalized generative adversarial network.

• Introduction of a novel concept of guaranteed coverage of the prediction set, proposing a

tunable significance level through conformal prediction for hardware trojan detection.

Additionally, defining an algorithm-agnostic and explainability-aware reject prediction made

by the machine learning model. When uncertain about identifying evolving trojans, the model

rejects the prediction, prompting human intervention for manual investigation.

• Proposal of a ranking mechanism for evolved trojans by assigning confidence scores to

predictions.
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CHAPTER 2

DETECTING EVOLVING HARDWARE TROJANS

The scientist has a lot of experience with ignorance and doubt and uncertainty, and this

experience is of very great importance, I think. When a scientist doesn’t know the

answer to a problem, he is ignorant. When he has a hunch as to what the result is, he is

uncertain. And when he is pretty damn sure of what the result is going to be, he is still

in some doubt. Scientific knowledge is a body of statements of varying degrees of

certainty – some most unsure, some nearly sure, but none absolutely certain.

— Richard Feynman

                                                                              Introduction

HT insertion refers to the malicious alteration of a hardware component’s design, which can 

lead to device malfunctions, leakage of sensitive data, or physical damage [1]. With the 

semiconductor industry increasingly adopting a fabless model, the risk of HTs being inserted during 

various stages of manufacturing has grown, posing a significant security threat to hardware systems. 

Traditional HT detection methods, such as signature-based approaches [2], which analyze 

Integrated Circuit (IC) functionality, layout, and timing, often struggle against sophisticated HT 

insertion attacks, particularly as Trojans can evolve over time. As a result, there has been a growing 

trend towards employing machine learning based solutions for more effective HT detection. 

However, despite efforts to adhere to best practices in ML evaluation, there are concerns about its 

efficacy in the hardware security context [3 ]. Many existing ML-based solutions lack sufficient 

information about dataset distributions and struggle to evaluate attacks in the face of concept drift or 

evolving datasets. To address these issues, recent studies, such as [4], have examined the 

effectiveness of ML in addressing hardware security challenges, recognizing that ML may not be a 

universal solution for all such problems [5].
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When employing machine learning methods, a significant concern arises regarding the

reliability of models, particularly in detecting HTs. Despite claims of minimal false positive rates,

models may not generalize well to unseen data due to concept drift, a phenomenon driven by

adversaries’ evolving HT insertion techniques. The ramifications of overlooking a false positive

extend beyond financial losses to potentially life-threatening scenarios, especially in critical

domains such as implantable medical devices. Hence, there is a pressing need for additional

evaluation metrics that can complement existing methodologies, ensuring robust decision-making

and comprehensive prediction coverage.

This thesis introduces PALETTE, an exPlainable frAmework for evoLving hardwarE Trojan

deTEction in risk-sensitive domains. Drawing on the algorithm-agnostic statistical inference

technique of conformal prediction [6], our framework provides risk-aware theoretical guaranteed

coverage of predictions, addressing the challenge of concept drift [7]. Notably, PALETTE serves as

a non-invasive overlay atop existing ML models, offering a nuanced approach to prediction. Instead

of a binary outcome, it furnishes a set prediction of detected labels, ensuring 95% average inclusion

of the correct class, thereby enhancing prediction reliability and decision-making confidence.

FIGURE 2. Comparison of traditional ML hardware Trojan detector with conformal 
inference.

In this chapter, we lay the groundwork for hardware security researchers to utilize machine 

learning in addressing their challenges and promote understanding of risk-managed predictions with 

assured coverage.
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                                             Notion of Evolution & Hardware Trojans

Darwin, in his seminal work On the Origin of Species, coined the term "descent with 

modification" as an alternative to "evolution." [59] Expanding on this concept, Futuyma provided a 

comprehensive definition of biological evolution, encompassing changes in organism properties 

over generations. Focusing on hardware Trojans (HTs), we refine the concept of evolution under the 

assumptions that HT characteristics evolve over time due to deliberate modifications by attackers.

Structural changes in HTs can be represented mathematically, denoted as

𝐸𝐻𝑇 → 𝐻𝑇■𝐻𝑇𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙_𝑐ℎ𝑎𝑛𝑔𝑒𝑠 where ■ denotes the operation for structural alterations

creating an evolved Trojan 𝐸𝐻𝑇 .

Behavioral changes are akin to natural selection, where attackers design HTs to adapt to the

integrated circuit (IC) environment, making their malicious impact harder to detect. Leveraging

these assumptions, we incorporate the notion of evolution to generate an evolved dataset for

machine learning-based HT detection engines. While anomaly detection methods can identify

evolved HTs, our focus lies on predicting HT evolution, enabling preemptive measures against

potential threats. Notably, existing literature lacks consideration of evolutionary aspects in HT

detection methodologies.

We utilize the aforementioned assumption to incorporate the concept of evolution and generate

an evolved dataset for machine learning-based HT detection systems. In the realm of HTs, we have

the option to either detect or forecast their evolution well in advance. While anomaly detection

methods can identify evolved HTs, our focus is on predicting their evolution. Anticipating the

evolutionary changes in the dataset enables us to implement targeted measures to mitigate the

impact of HT insertion. To date, we have not encountered any literature that addresses the

evolutionary aspect in the design of HT detection methodologies.

The method proposed in [60] for evolutionary dataset optimization aims to optimize a

real-valued function within a subset of all possible datasets. However, due to the non-independent

and non-identically distributed (Non-IID) nature of our real-time data, adapting this approach to our
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Algorithm 2: Conformalized GAN
Input :Training dataset D = {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1, where 𝑥𝑖 ∈ R𝑝 and 𝑦𝑖 ∈ {0, 1} are the feature

vector and label for the 𝑖-th example, respectively; significance level 𝛼; number of
conformal predictors 𝑀; GAN generator 𝐺; discriminator model 𝐷

Output
:

Conformalized discriminator model 𝐷CP

1 for 𝑚 = 1 to 𝑀 do
2 D𝑚 ← bootstrap sample of D;
3 Train GAN generator 𝐺𝑚 on D𝑚;
4 Generate synthetic dataset D𝑚

synth = {𝐺𝑚 (𝑧𝑖)}𝑛𝑖=1, where 𝑧𝑖 ∈ R𝑘 are random noise
vectors;

5 Train discriminator model 𝐷𝑚 on D𝑚 ∪ D𝑚
synth;

6 for 𝑖 = 1 to 𝑛 do
7 𝑋𝑖 ← {𝑥𝑖} ∪ {𝐺𝑚 (𝑧𝑖)}𝑀𝑚=1, where 𝑧𝑖 ∈ R𝑘 are random noise vectors;
8 CP𝑖 ← conformal predictor trained on (𝑋𝑖, 𝑦𝑖) with significance level 𝛼;
9 𝑝𝑖 ← CP𝑖 (𝐷 (𝑥𝑖));

10 Train conformalized discriminator model 𝐷CP on {(𝑥𝑖, 𝑦𝑖, 𝑝𝑖)}𝑛𝑖=1;
11 For each sample 𝑥𝑖 in the test set 𝐷𝑡𝑒𝑠𝑡 , make a prediction based on whether 𝐷 (𝑥𝑖) is within

the prediction interval 𝐼𝑖:

𝑦𝑖 =

{
1 if 𝐷 (𝑥𝑖) ∉ 𝐼𝑖

0 if 𝐷 (𝑥𝑖) ∈ 𝐼𝑖

12 return 𝐷CP

specific case is not feasible. An alternative strategy could involve employing evolutionary 

algorithms, as illustrated in Box2d [61], where the objective is to evolve the structure of a toy car by 

translating the car’s geometry into chromosomes. Nonetheless, a key challenge with this approach is 

the lack of prior knowledge regarding the structure of the evolved Trojan, which complicates its 

applicability to our scenario.

                                                                        Genetic Algorithm

Genetic algorithms (GAs) [62] have been applied to optimize the architecture of neural 

networks (NNs) for the analysis of logic locking security [63]. The process of designing an effective 

fitness function poses a significant challenge when employing GA. In our investigation, one 

potential approach involves assessing the collective efficacy of detection methodologies within an
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ensemble framework and subsequently comparing the resemblance of the evolved Trojan with 

known Hardware Trojans (HTs) stored in a reference dictionary. However, a noteworthy limitation 

of this fitness function arises from its inability to accurately evaluate Trojans that deviate from the 

established patterns.

    Generative Adversarial Network

Drawing upon principles from game theory and optimization, the primary objective of 

generative modeling [64] is to scrutinize a set of training instances and glean insights into the 

probability distribution that generated them. Generative Adversarial Networks (GANs) have 

exhibited prowess in tasks such as detecting counterfeit images [65] and synthesizing images from 

textual descriptions [66]. Notably, there has been a discernible shift towards harnessing GANs for 

processing tabular data, as evidenced by the advent of conditional GANs, as exemplified by Xu et 

al. [67], which demonstrate efficacy even with datasets exhibiting significant class imbalance. 

Notable open-source libraries facilitating such endeavors include those developed by Ashrapov [68], 

Lederrey et al. [69], and Zhao et al. [70].

The motivation for employing GANs in synthesizing datasets for HT detection is threefold.

Addressing Highly Imbalanced Data 

In practical scenarios, datasets containing labeled instances of Trojan-Infected circuits are 

scarce and challenging to discern, resulting in highly imbalanced datasets. Leveraging insights 

from existing literature, GANs present a viable solution for generating synthetic datasets that 

exhibit a more realistic distribution, thereby complementing the model training process.

Handling Non-IID Scenarios for Law of Large Numbers

      Given the propensity for evolved Trojans to deviate from their originating distribution, it 

becomes imperative to account for non-IID (non-independent and identically distributed) random 

variables. Illustratively, scenarios akin to those elucidated in [71] necessitate a departure from 

traditional statistical assumptions. As dataset sizes burgeon, the statistical reliability and 

consistency of the data augment. However, the idiosyncrasies of the non-IID case mandate 

meticulous consideration, given that evolved HTs may
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FIGURE 3. PALETTE is a proposed methodology aimed at designing evolving hardware 
Trojans.
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not adhere to the distribution characteristics observed in the original dataset.

Catering to Risk-Sensitive Applications

 Amidst the backdrop of potential financial repercussions, the tolerance for false positives 

diminishes significantly. In light of this, a proactive approach involves crafting synthetic datasets 

that closely mirror real-world scenarios. Leveraging GANs, particularly by conformalizing both 

the discriminator and generator components, offers a means to design datasets that encapsulate the 

nuances of real-world HT insertion scenarios. 

   Designing & Predicting Evolving Hardware Trojans

The proposed methodology for evolving HT detection, aptly dubbed PALETTE, is delineated 

in Fig. 3. Comprising four integral components, this framework embodies a concerted effort to 

anticipate and preemptively address the evolving threat landscape.

(1) In any machine learning based solutions, the initial step invariably involves the extraction 

of a dataset tailored to the problem at hand. In the context of HT, this dataset may encompass 

various forms such as images, tables, or graphs, each serving as a representation of the underlying 

hardware components. For instance, in prior research endeavors [72, 73], scanning electron 

microscope images have been employed as features extracted from integrated circuits for HT 

classification. Notably, a trend in HT detection entails the utilization of graph neural networks [42], 

which involves the conversion of register transfer level code to abstract syntax trees followed by 

graph-based classification or transformation of the graph into a vector for subsequent 

classification tasks.

In this thesis, we leverage features derived from code branching, sourced from the 

comprehensive trustHub chip-level trojan dataset [58], and the synthetic netlist dataset generated via 

the GAINESIS platform [74]. These datasets constitute a diverse array of representative 

information, facilitating robust ML model training for HT detection.

(2) The proposed solution introduces the conformalized generative adversarial network

(CGAN) algorithm, outlined in Algorithm 2. Inspired by the seminal work of [75], which harnesses 

principled uncertainty intervals to produce high-fidelity images from corrupted inputs, our 

algorithm endeavors to generate evolved representations of HTs with a guaranteed containment of
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true semantic factors. Drawing from this inspiration, we aim to produce high-quality evolved HT

representations by employing conformal prediction techniques on existing datasets such as

TrustHub [58] and GAINESIS [74].

The algorithm integrates conformal prediction methods to generate evolving HT instances

while simultaneously ascertaining associated confidence levels via prediction intervals. Fig. 4

juxtaposes the TrustHub source dataset with the synthetically generated evolved dataset, illustrating

the transition from RTL circuit representations to tabular structures comprising numeric arrays.

Unlike conventional GAN approaches, our proposed methodology offers a heightened level of

reliability in generating evolving HTs, thus contributing to the advancement of HT detection

methodologies.

It’s important to highlight that the original dataset is characterized by just two labels:

Trojan-Free (TF) and Trojan-Infected (TI). Consequently, the data generated via conformalized

GAN also reflects this binary classification. Here, all instances labeled as Trojan-Infected (TI) are

categorized as Evolved Trojans, indicated by the label T-EV, due to their generation via GAN

methods. This process results in the creation of a comprehensive dataset housing evolved Hardware

Trojans, featuring three distinct labels: TF, TI, T-EV.

(3) Following dataset processing, it is input into the conformal inference engine, which, rather

than providing singular point predictions, generates set predictions based on predefined significance

levels. Notably, this method remains algorithm-agnostic, allowing for the utilization of various

machine learning classifiers, whether statistical or deep learning-based, as depicted in Fig. 3.

Subsequently, a non-conformity score is computed for each prediction, with the 𝑝-value indicating

the probability of the prediction’s accuracy and facilitating the determination of guaranteed

coverage. A crucial aspect of this solution lies in its interpretation within risk-sensitive domains,

where even a single erroneous decision cannot be tolerated.

(4) We explore four distinct inferential scenarios rooted in conformal inference. The aim is to

quantify the uncertainty linked with each prediction and minimize the False Discovery Rate (FDR)
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for Trojan-Free (TF), Trojan-Infected (TI), or Evolving Trojan (T-EV) cases. The initial scenario

guarantees coverage, asserting that, based on a user-defined significance level, the predicted label

will fall within that class. This involves assigning a significance level considering the risk

associated with the prediction, and applying it to the 𝑝-values of each label for the circuit’s data

point. The second scenario leverages conformal prediction’s inherent characteristic, producing a set

prediction that may encompass all labels TF, TI, T-EV, a blend of labels TF, T-EV or TI, T-EV, or a

single label TF, TI, or T-EV. Thirdly, the predicted HTs are ranked by calculating the confidence of

each prediction, used to rank the severity of Trojan infection (TI, T-EV). This prioritization aids in

determining which instances require immediate mitigation efforts. Lastly, the fourth scenario

provides calibrated explanations for predictions where the model is uncertain and rejects the

prediction, thus addressing the limitations of local explanations by SHAP. This approach offers a

calibrated method to rationalize why a specific prediction must be rejected, signified by a NULL set,

FIGURE 4. Contrasting the authentic trust-hub chip-level trojan dataset.
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indicating the model’s inability to output a prediction for a specific significance level (1 − 𝛼) . These 

four customized prediction scenarios, tailored to risk awareness, are detailed alongside experimental 

findings in Section 9.

Experimental Results

In this section, we present the experimental outcomes based on two distinct datasets. The first 

dataset originates from GAINESIS [74], a synthetic dataset featuring binary labels. The second 

dataset is sourced from the Trust-Hub chip-level Trojan dataset [58], which comprises VHDL or 

Verilog source code files for individual IP core designs, encompassing both malicious and

non-malicious functionalities. Typically, the malicious functions are nested within conditional 

statements that are rarely executed. As a result, the ML features are extracted from these conditional 

statements. Our solution was implemented using Python (version 3.9) on macOS (version 13.3.1), 

operating with 8 GB RAM and a built-in GPU. The experimental results, along with the source code 

and datasets, are publicly available on GitHub 1.

Source Dataset 

For our experiment, we utilized features extracted from the TrustHub chip-level Trojan 

dataset [58], focusing on RTL design using Code branching features. This dataset comprises 

VHDL or Verilog source code files for each IP core design, encompassing both malicious and 

benign functions. The malicious functions are typically hidden within conditional statements that 

are rarely executed, thereby prompting the extraction of machine learning features from these 

conditional statements.

Additionally, we incorporated a synthetic dataset from GAINESIS, characterized by two labels,

{TF,TI}. The outcomes of our experimentation will be detailed in the subsequent sections.

Evolved Dataset

Initially, we generated 10,000 data points utilizing the proposed conformalized GAN based 

on the provided source dataset, selectively choosing only 20% of the evolved dataset. The 

generated dataset is labeled as 𝑇 𝐹𝐺 and 𝑇 𝐼𝐺 , whereas the source dataset comprises labels 𝑇 𝐹𝑆 and 

𝑇 𝐼𝑆. In our evolved dataset, we established three distinct labels as follows:

1https://github.com/cars-lab-repo/PALETTE/
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Trojan-Free (TF), encompassing 𝑇𝐹𝑆 and 𝑇𝐹𝐺 ; Trojan-Infected (TI), solely considering the label

𝑇 𝐼𝑆; and finally, Evolved Trojan (T-EV), consisting of the label 𝑇 𝐼𝐺 .

𝐿𝑎𝑏𝑒𝑙 = {𝑇𝐹,𝑇 𝐼, 𝑇 − 𝐸𝑉}

Subsequently, the dataset was partitioned into a training set, calibration set, and test set with a

ratio of 2:1:1. The training dataset comprised 1436 instances of TF, 114 instances of TI, and 308

instances of T-EV. For calibration, there were 470 TF instances, 33 TI instances, and 117 T-EV

instances. Notably, the calibration set included 18% of T-EV instances, while both the train and test

sets contained 16% each.

The dataset division into the training, calibration, and test sets is detailed in Table 1.

TABLE 1. Distribution of Dataset for Model Input

Train Calibration Test
TF 1436 470 471
TI 114 33 44

T-EV 308 117 105
Total count 1858 620 620

T-EV 16.50% 18.87% 16.93%

Baseline Model

We have the flexibility to select any classification algorithm as a baseline model because 

the PALETTE framework, outlined in Section 1, is agnostic to specific algorithms. In this context, 

logistic regression serves as our chosen classifier for identifying evolving HTs, and we assess 

model accuracy as a performance metric. When logistic regression is employed independently for 

HT detection, the overall accuracy achieves 0.85. However, by integrating conformal inference as a 

wrapper over logistic regression, the accuracy improves notably to 0.88 for 𝛼 = 0.05 and 0.90 for 𝛼 = 

0.1. This enhancement underscores the performance gains achievable by incorporating conformal 

inference into any classification model. A comprehensive breakdown of results is available on our 

GitHub repository.
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TABLE 2. Confusion Matrix for Base Model and Conformal Inference

Logistic Regression Conformal Inference
TF TI T-EV TF TI T-EV

TF 462 8 8 525 24 44
TI 11 26 2 0 10 7
T-EV 52 0 51 0 0 10

FIGURE 5. Efficient coverage and the average size of prediction sets.

Conformal Inference

It’s important to underscore that the conformal inference framework can be coupled with any 

classification algorithm. In our study, we’ve opted for logistic regression paired with Mondrian 

conformal predictors. The 𝑝-value serves as a gauge of confidence in the predictions made by the 

ML model. It operates akin to a rating system, indicating the model’s performance in predicting 

new data. To compute the 𝑝-value, we contrast the model’s forecast for new data with its 

predictions for the data it was trained on, employing hypothesis testing. A low 𝑝-value for new data 

suggests significant divergence from the model’s prior encounters, potentially indicating less 

reliable predictions. Hence, it’s imperative to exercise caution in interpreting predictions from the 

model if the 𝑝-value is exceedingly low.

The outcomes acquired subsequent to implementing conformal inference for identifying evolving 

HTs are delineated in Table 3. Each row represents an individual circuit, with the truth
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FIGURE 6. The Mondrian conformal predictor’s score distribution.

TABLE 3. Conformal Inference and Corresponding p-Values for the Trust-Hub Dataset

TF TI T-EV pTF pTI pT-EV y_pred Conf
1 T F F 0.319 0 0.003 TF 0.997
2 T F F 0.243 0.002 0.006 TF 0.994
3 T T F 0.161 0.078 0.016 TF 0.992
4 T T T 0.114 0.053 0.119 T-EV 0.886
5 T F F 0.645 0.001 0.004 TF 0.996
6 T F T 0.653 0 0.971 T-EV 0.365
7 T F F 0.3 0 0.002 TF 0.998

values for Trojan-Free (TF), Trojan-Infected (TI), and Evolving Trojan (T-EV) listed in the

respective columns. Additionally, the associated 𝑝-values for each label are presented in the

columns denoted as 𝑝TF, 𝑝TI, and 𝑝T-EV. Furthermore, the predicted Trojan status for each circuit

with a significance level of 𝛼 = 0.05 is recorded in the column labeled as 𝑦pred. The column

designated as Conf signifies the confidence score corresponding to each detected label for every

circuit, computed as 1 − 2nd𝑝max.

An application of conformal inference lies in enhancing the quality of detection for evolving

HTs. For instance, in Table 3, circuit 2 is identified as Trojan-Free because the 𝑝-values for TI and

T-EV fall below the threshold of 𝛼 = 0.05. Conversely, circuits 4 and 6 are recognized as infected

with an evolved Trojan. In the case of circuit 4, it is observed that the 𝑝-values for TF, TI, and T-EV

exceed the value of 𝛼, leading to all labels being set as True (T), with the maximum 𝑝-value

specified for the detected label.

Utilizing conformal inference allows us to assert with 95% detection assurance (as determined
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TABLE 4. Conformal Inference Applied to the GAINESIS Dataset

circuit TI TF y-pred Conf
1 FALSE TRUE TF 0.891
2 FALSE TRUE TF 0.796
3 FALSE TRUE TF 0.996
4 FALSE TRUE TF 0.997

... ... ... ... ...
4596 FALSE TRUE TF 1
4597 FALSE TRUE TF 0.991
4598 TRUE FALSE TI 0.995
4599 FALSE TRUE TF 0.989
4600 FALSE TRUE TF 0.992

by 𝛼 = 0.05 selected by the user) that circuit 4 is identified as an evolving Trojan with a confidence

score of 0.886. This capability facilitates granular-level reasoning for ensuring trustworthy and

robust decision-making processes.

Another property of conformal prediction is "prediction set", the prediction set refers to a range

of possible labels assigned to a specific instance, capturing the uncertainty associated with the

model’s prediction. Instead of providing a single deterministic prediction, conformal prediction

offers a set of potential labels along with a measure of confidence or significance level. In current

scenario, the set can include all the three labels, any of the two labels, single label, or no labels are

all (empty or NULL set).

For example, in Table 3, let’s pick instance number 3. Here, we have considered the value of 𝛼

as 0.05. So, to create a prediction set based on the obtained p-values (derived from the

non-conformity measure), we will skip all the labels whose p-value is less than 0.05 (𝛼). In this

case we will skip T-EV as its p-value is 0.016. This will give us a prediction set TF, TI. The

predicted label will be TF because pTF (0.161) is greater than pT-EV (0.078), and the confidence of

the prediction is calculated by 1 - 2nd p_max (1 0.078), i.e., 0.922.

Conformal prediction is algorithm-agnostic and can be used as a wrapper over any existing

machine learning algorithm, provided that a nonconformity score is designed for each algorithm.
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TABLE 5. Analyzing the Effectiveness of Conformal Predictors

alpha mondrian raps naïve top_k
0.05 10 37 35 0
0.5 45 57 57 61
0.9 45 61 61 61

Let: A be the set of all machine learning algorithms; N be the set of nonconformity scores

designed for each algorithm in A, and CP(N , ·) represent the conformal prediction framework

using nonconformity scores.

The conformal prediction framework can be applied to any machine learning algorithm 𝐴 ∈ A

by using the corresponding nonconformity score 𝑁 ∈ N . In mathematical terms:

CP(𝑁, 𝐴)

This signifies that conformal prediction (CP) is applied to a specific machine learning

algorithm (𝐴) using its associated nonconformity score (𝑁). The algorithm-agnostic nature of

conformal prediction allows it to serve as a wrapper, accommodating different algorithms by

leveraging their respective nonconformity scores.

We present the outcomes for binary labels (TF, TI) concerning the GAINESIS dataset in Table

4. The validation of the method was conducted on a total of 4600 synthetic circuits, encompassing

instances both with and without Trojans. The associated confidence scores are detailed in the

column labeled Conf.

Furthermore, we investigated various adaptations of conformal predictors as outlined in [76].

Table 5 demonstrates that the Mondrian conformal predictor adopts a rigorous approach in detecting

evolving hardware Trojans compared to the risk-adaptive prediction set methods such as raps, naive,

and top_k, each with different significance levels. The naive and top_k methods initially retrieve the

model output of the true class and then derive the estimated set prediction by extracting quantiles

from the score distribution. In contrast, the raps method arranges the model output in descending
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order to accumulate the output of the true class and subsequently employs it to obtain quantiles from 

cumulative score distributions. Notably, at a significantly high coverage of 95% (𝛼 = 0.05), both 

raps and naive methods detect nearly three times more Trojans compared to Mondrian, while the 

detection coverage becomes nearly equivalent as the coverage level is heightened.

     Performance Metrics

In contrast to traditional classification tasks, which typically yield receiver operating 

characteristic (ROC) curves and area under curve (AUC) scores, conformal inference offers 

alternative performance metrics: effective coverage and efficiency, represented by the average 

prediction set size. Unlike ROC and AUC, which can be influenced by imbalanced datasets, 

effective coverage and efficiency provide more robust measures of per formance. As depicted in 

Figure 5, Mondrian conformal predictors exhibit varying performance across these metrics. 

Effective coverage indicates the proportion of instances where the true label falls within the 

predicted region, with higher coverage values suggesting a more conservative prediction approach. 

Conversely, efficiency, reflecting the size of the label sets, serves as a direct measure of the 

predictor’s ability to reject class labels, with smaller sets indicating higher efficiency.

When evaluating conformal prediction methods, various performance metrics are considered, 

as detailed in Table 6, spanning significance levels from 0.05 to 0 .9. For instance, the avg_c metric 

signifies the average number of class labels in the prediction sets, providing insight into the 

predictor’s accuracy in discarding class labels. The significance level acts as a threshold governing 

the frequency of incorrect predictions by the machine learning model. Adjusting this level allows 

for balancing between prediction accuracy and precision, ensuring optimal model performance.

Additionally, performance metrics for the GAINESIS dataset are illustrated in Figure 6, 

showcasing the conforming score distribution across the five calibration folds for the Mondrian 

conformal predictor. Notably, consistent conforming scores are observed across each calibration 

split, indicating stability in performance across different calibration sets.
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TABLE 6. Performance Metrics of Conformal Inference

sig mean_err avg_c n_correct mean_T-EV
0.05 0.049 1.040 589 0.012
0.1 0.102 0.941 556 0.045
0.2 0.204 0.812 493 0.133
0.3 0.303 0.701 431 0.220
0.4 0.406 0.596 367 0.319
0.5 0.504 0.497 307 0.423
0.6 0.604 0.397 245 0.536
0.7 0.702 0.298 184 0.650
0.8 0.798 0.202 125 0.764
0.9 0.900 0.100 61 0.884

FIGURE 7. Calibrated explanation for decision rejection.

Risk-Aware Ranking

We utilize the confidence scores derived from conformal inference to establish a hierarchical 

ranking for evolved Hardware Trojans (HTs). For circuits 12, 13, and 14 sourced from the Trust-Hub 

dataset, their confidence scores (C) were computed using a significance level of 𝛼 = 0.05:

𝛼0.05(circuit 12) = {𝑇 − 𝐸𝑉}𝐶=0.88

𝛼0.05(circuit 13) = {𝑇 − 𝐸𝑉}𝐶=0.81

𝛼0.05(circuit 14) = {𝑇 − 𝐸𝑉}𝐶=0.61

The confidence in the model’s predictions is assessed through its 𝑝-value, indicating the

likelihood of achieving a similar outcome under the null hypothesis. Greater confidence levels

correspond to heightened accuracy. The confidence metric is defined as:
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TABLE 7. Utilization of Confidence for Risk-Conscious Prioritization

confidence credibility y_pred
1 0.997 0.319 TF
2 0.994 0.242 TF
3 0.922 0.162 TF
4 0.886 0.119 T-EV
5 1 0.645 TF
6 0.999 0.97 T-EV
7 0.998 0.301 TF

Confidence(𝑥) = sup{1 − 𝜖  :  |Γ𝜖 ( 𝑥) | ≤  1}

Ranking predictions via conformal inference furnishes a nuanced approach to evaluating their 

reliability. This hierarchical ranking empowers decision-makers to set thresholds or confidence 

levels for accepting or rejecting predictions based on their position in the hierarchy.

This framework provides a flexible tool for balancing accuracy and reliability across diverse 

applications. Table 7 illustrates the confidence and credibility of the identified labels, with 

credibility assessed by considering the maximum 𝑝-value within the specified set prediction. 

Credibility serves as a measure of the quality of new data points.

    Calibrated Explanations for Reject

In scenarios where the model fails to detect evolving HTs, it responds with a declaration of 

uncertainty, represented by an empty set, denoting "I don’t know." In contexts sensitive to risk, an 

absence of output from the model surpasses a decision lacking confidence. Our framework not only 

offers explanations for decision rejections but ensures their calibration, as illustrated in Figure 7, 

diverging from conventional explainability methods. For instance, when applying a significance 

level of 0.5 to a given circuit, none of the 𝑝-values for Trojan-Free (TF) (0.45), Trojan-Infected (TI)

(0.32), and Evolving Trojan (T-EV) (0.23) surpass the significance threshold, leading to the 

rejection of the decision. The rationale for this rejection is elucidated through Local Interpretable 

Model-agnostic Explanations (LIME) [77]. However, unlike SHAP, which overlooks causality and
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is susceptible to human biases, our method ensures the calibration of explanations prior to their

provision. This process involves generating modified instances of the original data, termed

perturbed instances, by introducing minor random alterations. Subsequently, conformal prediction

is employed to delineate prediction regions, estimating the reliability or confidence level of the

explanations. LIME is then reapplied to these perturbed instances to produce explanations for each.

The prediction regions established via conformal prediction serve as a calibration mechanism,

guaranteeing that the explanations accurately reflect their degree of reliability.
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CHAPTER 3

MULTIMODAL LEARNING FOR HARDWARE TROJAN DETECTION

On what is fear: non-acceptance of uncertainty. If we accept that uncertainty it

becomes an adventure! — Jalāl al-Dı̄n Muh.ammad Rūmı̄

              Introduction

The infiltration of HTs has emerged as a pressing issue in today’s fabless semiconductor 

manufacturing landscape. Attackers exploit opportunities to introduce malicious alterations, posing 

significant security risks such as data breaches, operational malfunctions, and chip damage [8–11]. 

The intricate stages of manufacturing offer numerous entry points for HT insertion, thus threatening 

the integrity of hardware systems. Vulnerabilities extend from the initial design phase, 

encompassing RTL code development and integration of third-party IP, to potential intrusions 

during electronic design automation (EDA) processes like synthesis and place-and-route. 

Additionally, vulnerabilities arise during mask preparation [78] and lithography in wafer fabrication, 

as well as throughout packaging, testing, and post-production phases, including third-party 

manufacturing and distribution. To address these risks effectively, robust security measures are 

imperative, spanning hardware design practices [13], supply chain management [14, 15], and 

comprehensive post-manufacturing testing [16] within the semiconductor industry.

To confront the challenges posed by HTs, a multifaceted approach is essential in today’s 

technological landscape. This approach encompasses rigorous design integrity verification through 

formal verification [79] and simulation-based testing, complemented by advanced intrusion 

detection systems (IDS) for continuous monitoring and prompt detection of suspicious activities. 

Moreover, hardware security measures like obfuscation [80], encryption [81], and secure boot [16] 

are critical for fortification against HT insertion and mitigation of their impact when detected. 

Additionally, secure boot processes [16] and real-time monitoring further bolster chip integrity,
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while adherence to recognized security certification standards ensures compliance with industry 

best practices.

Despite the necessity of comprehensive approaches for countering HTs, they are not without 

challenges. Formal methods and simulation-based testing can be resource-intensive and

time-consuming, while intrusion detection systems may generate false alarms, disrupting operations. 

Establishing a secure supply chain may limit flexibility in supplier selection, and

post-manufacturing testing incurs both time and cost. Therefore, achieving a delicate balance 

between these considerations and the imperative for robust Trojan defenses is paramount for 

semiconductor manufacturers.

Machine learning has recently emerged as an effective method for detecting HTs [ 17–21]. ML 

algorithms can discern patterns indicative of trojans, facilitating the classification of circuits as 

either trojan-free or trojan-infected. This capability enables continuous monitoring and rapid 

response to potential threats. However, several challenges accompany this approach. Acquiring 

large and diverse datasets, particularly those containing rare trojans, poses difficulties. Additionally, 

ML models are susceptible to adversarial attacks [22], which may undermine their decision-making 

processes. Ensuring interpretability [23] and explainability [24] of ML-based trojan detection 

methods is crucial for building trust. Furthermore, the resource-intensive nature of training and 

deploying ML models may limit accessibility for smaller manufacturers. Continuous retraining is 

necessary to adapt to evolving Trojan techniques [82], adding complexity to maintenance efforts.

NOODLE, an acronym for Uncertainty-aware Hardware Trojan Detection using Multimodal 

Deep Learning (NOODLE), is introduced in this chapter to bridge the existing gaps in ML-based 

methods for identifying HTs. This novel approach combines graph representation and tabular data 

to perform binary classification, aiming to enhance the accuracy and reliability of HT detection.

         Multimodal Hardware Trojan Detection

While recent advancements in HT detection have primarily concentrated on selecting 

appropriate algorithms and refining dataset representations to enhance accuracy, there has been
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FIGURE 8. NOODLE framework, an RTL file (Verilog) serves as the input.

minimal exploration into integrating diverse modalities of the same data and integrating them into 

ML systems. Incorporating information fusion from various modalities can yield a more nuanced 

data representation. Additionally, real-world datasets often contain missing values, resulting in 

absent modalities when employing a multimodal ML approach. Consequently, a method capable of 

handling missing modalities in any dataset is essential. Furthermore, within the hardware security 

domain, acquiring sufficient training data, particularly for labels denoting Trojan-infected instances, 

is challenging due to the rarity of such occurrences. Therefore, it becomes imperative to develop 

methodologies that effectively leverage limited data resources.
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Benefits of Mulitmodal Learning Approach

 The use of multimodal approach had proved better than unimodal approach based on the 

previous research works.

Let, 𝑋tabular be the feature set derived from the tabular (AST) representation, 𝑋graph be the 

feature set derived from the graph (graph2vec) representation, 𝑌 be the binary trojan classification 

(1 for Trojan Induced (TI), 0 for Trojan Free (TF)), 𝑓tabular (𝑋tabular) be the mapping function for the 

tabular representation.

The model can be represented as a combination of both modalities:

𝑌 = 𝑔( 𝑓tabular(𝑋tabular, 𝜃tabular), 𝑓graph(𝑋graph, 𝜃graph))

In this section, the benefits are emphasized with the following points.

• Comprehensive information representation: 𝑋combined = [𝑋tabular, 𝑋graph]

• Rich feature set: 𝑋combined = [𝑋tabular, 𝑋graph]

• Enhanced model robustness: 𝑌 = 𝑔( 𝑓tabular(𝑋tabular, 𝜃tabular) · 𝑓graph(𝑋graph, 𝜃graph))

• Improved generalization: 𝑌 = 𝑔( 𝑓tabular(𝑋tabular, 𝜃tabular) + 𝑓graph(𝑋graph, 𝜃graph))

• Handling missing or noisy data:

𝑌 = 𝑔(impute( 𝑓tabular(𝑋tabular, 𝜃tabular)), 𝑓graph(𝑋graph, 𝜃graph))

Our proposed framework, NOODLE, as illustrated in Figure 8, underscores the emphasis on

design and implementation. Additionally, a pseudocode outlining the framework’s operational steps

is provided in Algorithm 4. In our approach, we opt for utilizing two modalities: graph and tabular

data representations. While previous methodologies have employed techniques like multimodal

autoencoders [83] to handle missing modalities, we adopt generative adversarial networks

(GANs) [84] to augment the dataset size to 500 data points. GANs aim to generate samples

consistent with the joint distribution of the observed modalities, facilitating more effective
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multimodal fusion. Specifically, we segregate data points labeled as TF and employ GANs to

generate additional TF-labeled data points. We apply the same process to data labeled as TI.

Before using multimodal learning, we elucidate the process of uncertainty-aware model fusion.

To achieve uncertainty-aware multimodal fusion, we leverage conformal prediction 𝑝-values for

Algorithm 3: Uncertainty-aware information fusion
Input :Number of data sources 𝑁;

Training sets for each data source
𝑇1 = {(𝑥 (1)1 , 𝑦1), . . . , (𝑥 (1)𝑛 , 𝑦𝑛)}, . . . , 𝑇𝑁 = {(𝑥 (𝑁 )1 , 𝑦1), . . . , (𝑥 (𝑁 )𝑛 , 𝑦𝑛)}, where 𝑥 ( 𝑗 )

𝑖
is

the 𝑖th data point belonging to the 𝑗 th data source and 𝑦𝑖 is the class label of the 𝑖th data
point;
Number of classes 𝑀;
Class labels 𝑦 (𝑖) ∈ 𝑌 = {𝑦 (1) , 𝑦 (2) , . . . , 𝑦 (𝑀 ) };
Classifiers 𝑆1, . . . , 𝑆𝑁 for each data source;
Confidence level 𝐸 .

Output
:

Conformal prediction regions 𝑟𝐸 = {𝑦 ( 𝑗 ) : 𝑝 𝑗 > 1 − 𝐸, 𝑦 ( 𝑗 ) ∈ 𝑌 }.

1 Get the new unlabeled example w.r.t each data source 𝑥 (1)
𝑛+1, . . . , 𝑥

(𝑁 )
𝑛+1 .

2 Evaluate conformal predictors and classifiers 𝑆1, . . . , 𝑆𝑁 corresponding to each data source,
compute 𝑝-values 𝑝

(𝑖)
𝑗

, where 𝑖 = 1, . . . , 𝑁 corresponds to the 𝑖th data source and 𝑗 = 1, . . . , 𝑀
corresponds to the 𝑗 th class label.

3 for each class label 𝑦 ( 𝑗 ) , 𝑗 = 1, . . . , 𝑀 do
4 Compute 𝑝-value, 𝑝 𝑗 , of combined hypothesis from 𝑁 modalities
5 return 𝑟𝐸 .

Algorithm 4: Multimodal deep learning
Input :RTL-level files (Verliog) of circuits
Output
:

Decision (D) = Trojan-free or Trojan-infected

1 for each circuit 𝐶 do
2 Convert 𝐶 to Graph data G and Euclidean data T.

if ∃ missing modalities then
3 perform GAN to impute the missing modality.

4 Feed the modalities to CNN-based classifier.
for each modalities 𝑀 do

5 Use Algorithm 3 for uncertainty-aware information fusion.
6 Perform early fusion.
7 Perform late fusion.
8 Choosing the winning fusion method.
9 return 𝐷.
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model fusion, as delineated in Algorithm 3. Initially, we employ a convolutional neural network

(CNN)-based classifier for graph and tabular data sources, incorporating a specifically designed

non-conformity score. This non-conformity score furnishes 𝑝-values for each label and each data

modality. Subsequently, these 𝑝-values are integrated into the conformal prediction framework to

obtain calibrated conformal predictions.

𝑁𝑆 =

𝑇∑︁
𝑡=1

𝐵𝑡 (𝑥, 𝑦) (4)

where 𝐵𝑡 (𝑥, 𝑦) is the non-conformity score of (𝑥, 𝑦) computed from a classifier, ℎ𝑡 . Thus, for every

class label 𝑦( 𝑗), 𝑗 ∈ {1, ..., 𝑀}, we have an individual null hypothesis for each data source,

𝐻01, 𝐻02, ..., 𝐻0𝑁 , where 𝑀 is the number of class labels, which in our case is either TF or TI, and

𝑁 is the number of data sources. Thus, for every class label 𝑦( 𝑗), we obtain 𝑁 𝑝-values, 𝑝(𝑖),

𝑖 = 1, ..., 𝑁 (one for each modality). These 𝑝-values are then combined into a new test statistic

𝐶 (𝑝(1), ..., 𝑝(𝑁)), which is used to test the combined null hypothesis 𝐻0 for class label 𝑦( 𝑗).

The delineation of the conformal prediction region, as defined by 𝑟𝐸 , manifests as a set

encompassing all class labels characterized by a 𝑝-value exceeding 1 − 𝐸 . These procedural steps

substantiate the realization of uncertainty-aware multimodal fusion.

Following the acquisition of a substantial corpus of data points for experimentation, the

instantiation of multimodal machine learning ensues, leveraging both graph and tabular data.

Specifically, the adoption of a convolutional neural network facilitates binary classification. While

it remains pertinent to acknowledge the potential for optimization of any machine learning model

through hyperparameter tuning to bolster accuracy, our primary directive revolves around the

evaluation of the efficacy of uncertainty-aware multimodality, interrogating both early and late

fusions. Consequently, the model is poised to engender more informed decisions in the domain of

HT detection.
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     Experimental Results

The implementation of NOODLE was conducted utilizing Python version 3.9, executed on a 

macOS platform with an 8GB RAM configuration. The experimental outcomes, alongside the 

source code and dataset, have been made publicly accessible on GitHub1, facilitating transparency 

and reproducibility in our research endeavors.

Dataset

 In our experimental setup, we meticulously selected datasets that offer comprehensive 

coverage and intricate insights into the detection of HTs. Specifically, we harnessed the features 

extracted from the TrustHub RTL-level (Verilog) Trojan dataset, derived from code branching 

features [58]. This dataset comprises RTL source code files (Verilog) encompassing diverse IP 

core designs, wherein both malicious and non-malicious functions are embedded. Additionally, 

we integrated the graph dataset delineated in [57], which augments our analysis by providing an 

alternative perspective on HT detection. This dataset encapsulates RTL source code files 

(Verilog) for various IP core designs.

TABLE 8. Comparison of Brier Scores Across Various Modalities

Dataset Brier Score
Graph-based Data 0.1798
Tabular-based Data 0.1913
NOODLE - Early Fusion (Graph + Tabular) 0.1685
NOODLE - Late Fusion (Graph + Tabular) 0.1589

Brier Score

 In many classification scenarios, accuracy serves as the primary metric for evaluating 

model performance, often supplemented by additional measures such as precision, recall, and F1-

score. However, when dealing with imbalanced class distributions, these metrics may not provide 

a complete picture of model effectiveness. To address this issue in the context of detecting 

Hardware Trojans (HTs), we employ the Brier score as an alternative evaluation metric. The Brier

1https://github.com/cars-lab-repo/NOODLE 40
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(a) (b)

FIGURE 9. The Brier scores for NOODLE are presented in fusion approaches.

score offers insights into both accuracy and calibration of probabilistic predictions. Mathematically,

it is expressed as:

𝐵𝑆 =
1
𝑁

𝑁∑︁
𝑖=1
(𝑝𝑖 − 𝑜𝑖)2

Here, 𝑁 represents the total number of instances, 𝑝𝑖 denotes the predicted probability for instance 𝑖,

and 𝑜𝑖 represents the observed outcome for the same instance. The Brier score ranges between 0

and 1, with 0 indicating perfect accuracy where predicted probabilities precisely align with actual

outcomes, and 1 indicating complete inaccuracy, signifying a complete mismatch between predicted

probabilities and actual outcomes.

We initiate the evaluation process by conducting separate assessments of each modality. This

involves performing binary classification tasks on both the graph dataset and the tabular data. The

comparative Brier scores resulting from these classification tasks are summarized in Table 8. The

experimental findings reveal that, when employing an identical CNN-based deep learning model

with consistent hyperparameters, the graph dataset yields a superior Brier score of 0.1798 compared

to the tabular data, which yields a score of 0.1913. It is important to note that while we utilized a
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CNN as the baseline model, alternative classification algorithms can also be considered within this 

framework.

Subsequently, we evaluate the NOODLE framework utilizing two distinct information fusion 

methodologies: early fusion (feature-level fusion) and late fusion (decision-level fusion). As 

indicated in Table 8, the early fusion approach, which integrates the graph and tabular data before 

processing, results in a Brier score of 0.1685. Conversely, the late fusion strategy, which integrates 

the graph and tabular data after individual processing, exhibits superior performance with a Brier 

score of 0.1589.

It is essential to acknowledge that neither of these data fusion methods can be unequivocally 

labeled as superior, as each method may demonstrate its efficacy under varying data 

distributions [85]. Hence, we implemented both fusion approaches and selected the one that yields 

a lower Brier score (i.e., closer to 0), as delineated in Step 8 of Algorithm 4. The corresponding 

Brier score distributions with mean intervals are illustrated in Fig. 9a and Fig. 9b for early and late 

fusion, respectively. This comprehensive depiction of predictive accuracy across multiple scenarios 

facilitates model comparison and provides insights into performance variability.

Confidence Calibration Curve

 The confidence calibration curve depicted in Figure 10 illustrates the correspondence 

between observed probabilities and predicted probabilities generated by the classification model. 

Ideally, a perfectly calibrated model would exhibit all data points aligning along the diagonal. 

However, in our scenario, the model’s calibration is hindered due to the imbalanced nature of the 

dataset. It is imperative for decision-makers to consider these instances when making risk-aware 

decisions, emphasizing the limitations of relying solely on accuracy metrics. This evaluation aids 

in assessing the coherence between the model’s predicted probabilities and the actual likelihood of 

events.

Additionally, the histogram featured at the bottom of Figure 10 showcases the distribution of 

predicted probabilities for 109 test data points. This visualization offers insights into the sharpness 

of the predictions, reflecting the propensity of forecasts to cluster towards the extremities of the 

0-1
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FIGURE 10. Confidence
calibration curve of
NOODLE

FIGURE 11. ROC-AUC
curve of NOODLE with late
fusion

FIGURE 12. Radar plot for
aggregated metrics in NOODLE

distribution, which corresponds to the variance of the predictions.

        ROC-AUC Curve

The receiver operating characteristic (ROC) curve delineates the equilibrium between 

sensitivity and specificity within a model, offering a graphical depiction of their fluctuations across 

different classification th resholds. Conversely, the area under the curve (AUC) serves as a numerical 

measure denoting the probability that a randomly selected pair of circuits, one with a Trojan and 

one without, will be correctly classified by the model. Fig. 11 depicts the ROC-AUC curve for the 

NOODLE model.

The white region delineates the optimal performance zone of the model, while the faintly 

shaded red regions depict acceptable efficacy zones. ROC-AUC values vary between 0 and 1, with 

those closer to 1 indicating a strong ability to differentiate between TF and TI instances with 

considerable certainty. Conversely, values approaching 0 denote performance inferior to random 

chance. In this instance, the ROC-AUC value of 0.928 signifies the model’s commendable 

performance.

Radar Plot

The radar plot, depicted in Fig. 12, serves as a valuable tool for visualizing complex,

multi-dimensional data. While evaluating the performance of a predictor, there is often a tendency
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to focus on a limited set of metrics. However, the radar plot offers a comprehensive perspective by

portraying performance across diverse dimensions. In this chart, each variable is represented along

its corresponding axis, with some variables normalized to fit within the 0-1 range of the radial axis.

Organizing the variables in a manner that clusters related concepts or principles facilitates a

thorough evaluation of various aspects of performance.

Within the radar plot, metrics related to discrimination are highlighted, including the AUC,

resolution, and refinement loss. Additionally, combined metrics that assess both calibration and

discrimination, such as the Brier score and Brier skill score, are presented. Analysis of the radar

plot indicates that the model demonstrates lower sensitivity but high accuracy. This suggests that

while the model generally provides accurate predictions, it may not effectively identify all instances

of Trojan infection. This discrepancy could be attributed to a higher incidence of false negatives,

indicating that the model fails to detect some positive cases.
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CHAPTER 4

CONCLUSIONS AND FUTURE WORKS

The only truly secure system is one that is powered off, cast in a block of concrete and

sealed in a lead-lined room with armed guards.

— Gene Spafford

In this thesis, novel methods were designed to fix the evident gaps in contemporary hardware

security research. A deep learning approach, complemented by uncertainty awareness, was

employed to discern and detect evolving hardware trojans. In this study we systematically addressed

the case of missing modalities in the dataset, enhancing the overall quality of the proposed

framework. Additionally, the thesis contributed to the field by addressing a previously overlooked

evaluation metric, aiming to quantify predictions generated by machine learning methods in the

intricate task of hardware Trojan detection.

Chapter 2 presented a methodology for generating a high-quality evolving dataset utilizing a

conformalized generative adversarial network. Subsequently, we introduced an algorithm-agnostic

framework named PALETTE designed for the detection of evolving hardware Trojans with

guaranteed coverage. Additionally, we introduced a novel approach for rejecting decisions by

providing calibrated explanations. PALETTE demonstrates efficiency in detecting hardware Trojans

while also providing uncertainty quantification for each detection. Our findings underscore potential

avenues for researchers in related hardware security domains, such as logic locking [86–89], to

reconsider the application of machine learning-based solutions and redefine metrics for evaluating

their methodologies. While we acknowledge that there is no foolproof solution against zero-day

attacks, a robust method to minimize the likelihood of an attack and a proactive defense approach

can significantly mitigate potential threats.

Chapter 3 explored the escalating issue of hardware Trojans clandestinely inserted into chips
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during various stages of production, particularly within the context of the increasingly distrustful 

landscape of fabless manufacturing. We innovatively employed generative adversarial networks to 

augment our dataset, encompassing two distinct modalities: graph and tabular representations. 

Furthermore, we introduced an uncertainty-aware multimodal deep learning framework named 

NOODLE to detect hardware Trojans. Our evaluation encompassed both early and late fusion 

strategies, offering a comprehensive assessment of our approach’s effectiveness. Additionally, we 

integrated uncertainty quantification metrics for each prediction, facilitating informed

decision-making while considering potential risks. The incorporation of multimodality and 

uncertainty quantification holds promise for tackling other critical challenges in hardware security, 

such as logic locking [86–89]. These contributions collectively mark a significant advancement in 

bolstering the security and dependability of hardware systems amid evolving threats.

          Future Works

Building upon the foundational work presented in this study, future research endeavors should 

focus on enhancing the technical aspects of hardware Trojan detection. This entails delving into 

uncertainty quantification within multimodal deep learning frameworks, achieved through the 

development of alternative non-conformity measures tailored to the implemented deep learning 

algorithms.

Exploration of alternative generative models: One avenue for future investigation involves 

exploring alternative generative models beyond conformalized generative adversarial networks

(cGANs). Assessing the efficacy of cutting-edge generative models such as Wasserstein GANs or 

Progressive GANs could shed light on enhancing the quality of the evolving dataset. This, in turn, 

could bolster the robustness of hardware Trojan detection mechanisms.

Enhancement of uncertainty quantification methodologies: While the NOODLE framework 

demonstrates innovation, there is potential for further refinement in uncertainty quantification 

methodologies. Integrating Bayesian deep learning techniques or ensemble methods might yield 

more precise and calibrated uncertainty estimates. Such enhancements could enhance the reliability
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of the detection system, particularly in dynamic environments.

Additionally, there are avenues for expanding the multimodal capabilities of the NOODLE

framework. The incorporation of additional modalities, such as temporal or spectral representations,

holds promise for augmenting the framework’s ability to discern subtle variations indicative of

hardware Trojans. Investigating optimal fusion strategies for these modalities and evaluating their

impact on both detection performance and uncertainty quantification represents a fertile area for

future exploration. Moreover, there is potential for integrating the proposed frameworks into

hardware security testing environments, including Hardware Security Modules (HSMs) or Field

Programmable Gate Arrays (FPGAs), for real-world validation. Addressing practical challenges

related to resource constraints, latency, and scalability will be paramount to ensuring seamless

integration into existing hardware security infrastructures.
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